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Abstract. In this paper we consider the location of a tree-shaped facility S on a tree network, using the ordered
median function of the weighted distances to represent the total transportation cost objective. This function
unifies and generalizes the most common criteria used in location modeling, e.g., median and center. If there
are n demand points at the nodes of the tree T = (V , E), this function is characterized by a sequence of reals,
� = (λ1, . . . , λn), satisfying λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. For a given subtree S let X(S) = {x1, . . . , xn} be the
set of weighted distances of the n demand points from S. The value of the ordered median objective at S is
obtained as follows: Sort the n elements in X(S) in nonincreasing order, and then compute the scalar product
of the sorted list with the sequence �. Two models are discussed. In the tactical model, there is an explicit
bound L on the length of the subtree, and the goal is to select a subtree of size L, which minimizes the above
transportation cost function. In the strategic model the length of the subtree is variable, and the objective
is to minimize the sum of the transportation cost and the length of the subtree. We consider both discrete
and continuous versions of the tactical and the strategic models. We note that the discrete tactical problem
is NP-hard, and we solve the continuous tactical problem in polynomial time using a Linear Programming
(LP) approach. We also prove submodularity properties for the strategic problem. These properties allow us
to solve the discrete strategic version in strongly polynomial time. Moreover the continuous version is also
solved via LP. For the special case of the k-centrum objective we obtain improved algorithmic results using a
Dynamic Programming (DP) algorithm and discretization and nestedness results.

1. Introduction

In a typical location problem there is a set of demand points embedded in some met-
ric space and the objective is to locate a specified number of servers optimizing some
criterion, which usually depends on the distances between the demand points and their
respective servers. Traditionally most papers focus on location problems where a server
(facility) is representable by a point in the metric space. However, in the last years there
has been a growing interest in studying the location of connected structures, which can
not be represented by isolated points in the space. These problems were motivated by
concrete decision problems related to routing and network design. For instance, in order
to improve the mobility of the population and reduce traffic congestion, many existing
rapid transit networks are being updated by extending or adding lines. These lines can
be viewed as new facilites. Studies on location of connected structures (which are called
extensive facilities), appeared already in the early eighties [22], [13], [30], [21], [20],
[2]). [12] focused on the complexity of solving many versions of location problems of
extensive facilities. Almost all the location problems of extensive facilities that have
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been discussed in the literature and shown to be polynomially solvable, are defined on
tree networks. (See e.g., [1], [3], [4], [25], [26], [29], [30], [33], [36], [38], [41], [42],
and the references therein.) In the case of a metric space induced by a tree network,
the extensive facilities are identified as (closed) subtrees. If the leaves of a subtree are
restricted to be nodes of the tree, the subtree facility is called discrete, otherwise it is
continuous. Hence, we distinguish between continuous and discrete location models.
Another parameter is the length of the selected subtree. In some of the problems there
is a constraint on the total length of the extensive facility, and the objective is then to
minimize some monotone function of the distances between the demand points and
the facility. In other models, the length of the facility is not a constraint but a decision
variable, which enters also into the objective. Following a common classification in
logistic models, e.g., [5], we call the former class of problems tactical and the latter
class strategic. Most papers mentioned above deal only with tactical, discrete and con-
tinuous location problems. Strategic models on tree networks have been analyzed by
[17].

Finally, turning to the objective function, the dependence of the distances of the
demand points to the selected facility has commonly been expressed either as the min-
sum (median), or the minmax (center) criteria. (An exception is [38], where the authors
consider the centdian objective which is a convex combination of the median and the
center criteria.)

The goal of this paper is to study tactical and strategic location of tree-shaped facili-
ties, using the ordered median objective. This objective function unifies and generalizes
the most common criteria mentioned above, e.g., median and center. If there are n

demand points, this function is characterized by a sequence of reals, � = (λ1, . . . , λn),
satisfying λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. For a given subtree S, let X(S) = {x1, . . . , xn} be
the set of weighted distances of the n demand points from S. The value of the ordered
median objective at S is obtained as follows: Sort the n elements in X(S) in nonincreas-
ing order, and then compute the scalar product of the sorted list with the sequence �. It
is easy to see that when λi = 1, i = 1, . . . , n, we get the median objective and when
λ1 = 1 and λi = 0, i = 2, . . . , n, we obtain the center objective. Another important
case is the k-centrum objective, characterized by λi = 1, i = 1, . . . , k, and λi = 0,
i = k + 1, . . . , n. The ordered median objective function has been studied recently in
the context of locating facilities that can be represented by points in the respective space.
(See e.g., [9], [10], [15], [16], [23], [28].)

Our goal is to investigate some algorithmic aspects of locating tree-shaped facilities
with the ordered median objective.

It is worth noting the difference between the analysis of problems with the or-
dered median objective and with other classical functions in location analysis (me-
dian, center, centdian, or even centrum). In spite of its inherent similarity the ordered
median objective does not possess any clear separability properties. As a result stan-
dard DP approaches, commonly used to solve location problems with median, center
and even centrum objectives [33], [34], [37], [38], are not applicable here. As a re-
sult we need to look for new approaches that rely on alternative tools. We have proven
submodularity properties and found linear programming formulations that turn out to
be instrumental in solving discrete and continuous versions of the problems, respec-
tively.



Locating tree-shaped facilities using the ordered median objective 3

Table 1. New results in the paper

Complexity of Tree-shaped facilities (1)

Tactical Strategic
Discrete Continuous Discrete Continuous

Convex ordered median NP-hard O(n7 + n6I ) O(n6 log n) O(n7 + n6I )

k-centrum NP-hard O(n3 + n2.5I )(2) O(kn3) (2) O(kn7) (2)

1 I denotes the input size of the problem.
2 A nestedness property with respect to the point solution holds.

In this paper we consider the strategic and tactical versions of the problem of locating
a tree-shaped facility. For the strategic model we prove submodularity of the discrete and
continuous models, when the subtree contains a specified node, and the objective is the
convex ordered median function. This property leads to strongly polynomial algorithms
for the discrete model, based on minimizing a submodular function over a lattice. We
could not use this approach to solve the continuous problem since it is not known how
to discretize this continuous case. Instead, we develop a compact LP formulation for the
continuous version, when the size of the subtree is its length. Specifically, when the tree
network has n nodes the LP formulation uses O(n2) variables and O(n2) constraints.

For the tactical model the discrete version is NP-hard even for the special case of the
median objective. Therefore, we deal only with the continuous version. We formulate the
continuous problem, when the subtree contains a specified node, in terms of a compact
linear problem with O(n2) variables and O(n2) constraints. The validity of this formu-
lation implies that the objective value of the parametric version of the model, where the
length of the subtree (facility) is the parameter, is a decreasing piecewise linear convex
function of the length of the subtree.

For the particular case of the k-centrum objective we derive stronger results. We pres-
ent a dynamic programming algorithm that can process both, the discrete and continuous
strategic models of the k-centrum version. For this objective we also prove nestedness
properties of the subtree solution with respect to the point solution, for the continuous
tactical and the continuous and discrete strategic models. The former result enables us
to solve the continuous tactical model on the entire tree by solving only one LP problem.
In Table 1 we present the complexity of the algorithms developed in the paper.

The paper is organized as follows. In Section 2 we define the models that we deal
with, and state the notation used throughout the paper. Section 3 and 4 analyze the tac-
tical and strategic models of the convex ordered median subtree problem, respectively.
In Section 5 we restrict ourselves to the special case of the subtree k-centrum problem.
There we prove nestedness properties and develop a DP algorithm that solves both the
strategic continuous and discrete subtree k-centrum problems. The paper ends with some
remarks on extensions to other problems.

2. Notation and model definitions

Let T = (V , E) be an undirected tree network with node set V = {v1, . . . , vn} and
edge set E = {e2, . . . , en}. Each edge ej , j = 2, 3, . . . , n, has a positive length lj ,
and is assumed to be rectifiable. In particular, an edge ej is identified as an interval
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of length lj so that we can refer to its interior points. We assume that T is embedded
in the Euclidean plane. Let A(T ) denote the continuum set of points on the edges of
T . We view A(T ) as a connected and closed set which is the union of n − 1 inter-
vals. Let P [vi, vj ] denote the unique simple path in A(T ) connecting vi and vj . Sup-
pose that the tree T is rooted at some distinguished node, say v1. For each node vj ,
j = 2, 3, . . . , n, let p(vj ), the parent of vj , be the node v ∈ V , closest to vj , v �= vj

on P [v1, vj ]. vj is a child of p(vj ). ej is the edge connecting vj with its parent p(vj ).
Sj will denote the set of all children of vj . A node vi is a descendant of vj if vj is on
P [vi, v1]. Vj will denote the set of all descendants of vj . We refer to interior points on
an edge by their distances along the edge from the two nodes of the edge. The edge
lengths induce a distance function on A(T ). For any pair of points x, y ∈ A(T ), we
let d(x, y) denote the length of P [x, y], the unique simple path in A(T ) connecting
x and y. A(T ) is a metric space with respect to the above distance function. The path
P [x, y] is also viewed as a collection of edges and at most two subedges (partial edges).
P(x, y) will denote the open path obtained from P [x, y], by deleting the points x, y,
and P(x, y] will denote the half open path obtained from P [x, y], by deleting the point
x. Also, for any pair of subsets X, Y ⊂ A(T ) we define d(X, Y ) = d(Y, X) = Infimum
{d(x, y)|x ∈ X, y ∈ Y }. If X is a singleton, i.e., X = {x} for some x ∈ A(T ), we will
use the notation d(x, Y ) = d(Y, x) = d({x}, Y ). A subset Y ⊂ A(T ) is called a subtree
if it is closed and connected. Y is also viewed as a finite (connected) collection of partial
edges (closed subintervals), such that the intersection of any pair of distinct partial edges
is empty or is a point in V . We call a subtree discrete if all its (relative) boundary points
are nodes of T . For each i = 1, . . . , n, we denote by Ti the subtree induced by Vi . T +

i

is the subtree induced by Vi ∪ {p(vi)}.
If Y is a subtree we define the length or size of Y , L(Y ), to be the sum of the lengths

of its partial edges. We also denote by D(Y) the diameter of Y . In our location model
the nodes of the tree are viewed as demand points (customers), and each node vi ∈ V is
associated with a nonnegative weight wi . The set of potential servers consists of subtrees.
There is a transportation cost function of the customers (assumed to be at the nodes of
the tree) to the serving facility. We use the ordered median objective.

This function is characterized by a sequence of reals, � = (λ1, . . . , λn). For a given
subtree S, let X(S) = {w1d(v1, S), . . . , wnd(vn, S)} be the set of weighted distances
of the n demand points from S. Let X−(S) be the sequence obtained by sorting the
elements in X(S) in nonincreasing order. The value of the ordered median objective at S

is then the scalar product of X−(S) with the sequence �. The ordered median objective
is called convex if λ1 ≥ λ2... ≥ λn ≥ 0.

Given a real L, the tactical subtree problem with an ordered median objective is the
problem of finding a subtree (facility) Y of length smaller than or equal to L, minimizing
the ordered median objective. When L = 0, we will refer to the problem as the point
problem instead of the subtree problem, and call its solution a point solution.

Given a positive real α, the strategic subtree model is the problem of finding a subtree
(facility) Y minimizing the sum of the ordered median objective and the setup cost of
the facility. (The setup cost will be represented by αL(Y ).)

We say that a tactical (strategic) model is discrete when the endnodes (leaves) of Y

must be nodes in V . If the endnodes of Y may be anywhere in A(T ) we call the model
continuous.
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3. Tactical subtree with convex ordered median objective

In this section we consider the problem of selecting a subtree of a given length which
minimizes the convex ordered median objective. We recall that the discrete model is
NP-hard even for the median function, since the Knapsack Problem is a special case.
Thus, we consider the continuous version.

First we note that if a continuous subtree does not contain a node it is properly con-
tained in an edge. Hence, to solve the continuous model it is sufficient to solve O(n)

continuous subproblems where the subtree is restricted to contain a distinguished node,
and in addition, n − 1 continuous subproblems where the subtree is restricted to be a
subedge of a distinguished edge. We show later how to find an optimal subedge of a
given edge in O(n log2 n) time, by converting the problem into a minimization of a sin-
gle variable, convex and piecewise linear function. To find an optimal subtree containing
a distinguished point (node) we require a different machinery.

3.1. Finding an optimal tactical continuous subtree containing a given node

We first assume that the selected subtree must contain v1, the root of the tree T . For each
edge ej of the rooted tree, connecting vj with its parent, p(vj ), assign a variable xj ,
0 ≤ xj ≤ lj . The interpretation of xj is as follows: Suppose that xj > 0, and let xj (ej )

be the point on edge ej whose distance from p(vj ), the parent of vj , is xj . The only part
of ej , included in the selected subtree rooted at v1 is the subedge P [p(vj ), xj (ej )]. In
order for the representation of a subtree by the xj variables to be valid, we also need the
following condition to be satisfied:

xj (li − xi) = 0, if vi = p(vj ), vi �= v1, and j = 2, . . . , n. (1)

Equation (1) ensures the connectivity of the subtree represented by the variables xj .
Unfortunately, these constraints are non-linear. For each node vt , the weighted distance
of vt from a subtree (represented by the variables xj ), is

yt = wt

∑

vk∈P [vt ,v1)

(lk − xk).

We call a set X = {x2, . . . , xn} admissible if x2, . . . , xn, satisfy 0 ≤ xj ≤ lj ,
j = 2, . . . , n, and

n∑

j=2

xj ≤ L. (2)

Note that an admissible solution induces a closed subset of A(T ) of length less than or
equal to L, which contains v1.

Proposition 3.1. Let X = {x2, . . . , xn} be admissible. For each vt ∈ V , define yt =
wt

∑

vk∈P [vt ,v1)

(lk − xk). Then, there exists an admissible set X′ = {x′
2, . . . , x′

n}, satisfying (1),

such that for each vt ∈ V

y′
t = wt

∑

vk∈P [vt ,v1)

(lk − x′
k) ≤ yt .
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Proof. The positive components of X induce a collection of connected components
(subtrees) on the rooted tree T . Each such subtree is rooted at a node of T . One of
these components contains v1. (If no positive variable is associated with an edge inci-
dent to v1, then {v1} will be considered as a connected component.) If there is only one
component in the collection X itself satisfies (1). Suppose that there are at least two
connected components. A connected component T ′ is called minimal if there is no other
component T ′′, such that the path from T ′′ to v1 passes through T ′. Let T ′ be a minimal
component. Let vi be the root of T ′, and let xj , xj > 0, induce a leaf edge of T ′. In other
words, vi is the closest node to v1 in T ′, and there is a node vj , possibly in T ′, such that
xt = 0 for each descendant vt of vj . Let T1 be the connected component containing v1.
Consider the point of T1, which is closest to vi . It is uniquely identified by a node vk on
P [vi, v1], and its associated variable xk . (It is the point on the edge (vk, p(vk)) whose
distance from p(vk) is exactly xk .) Let T ∗, be the closest component to vk , amongst all
the components which intersect P [vi, vk] and do not contain v1. Let vq be the root of
T ∗. Set

ε = min[xj , d(vq, vk) + lk − xk].

If ε = d(vq, vk) + lk − xk , define an admissible solution Z = {z2, . . . , zn} by zp = lp
for each node vp on P [vq, vk], zj = xj − ε, and zs = xs for any other node vs ,
vs �= vj , vs not on P [vq, vk]. It is easy to check that wt

∑
vk∈P [vt ,v1)

(lk − zk) ≤ yt ,
for each vt ∈ V . Note that the number of connected components induced by Z is
smaller than the number of connected components induced by X. We can replace X by
Z and proceed. Suppose that ε = xj < d(vq, vk) + lk − xk . We similarly define an
admissible solution Z = {z2, . . . , zn}. Specifically, let vm be a node on P [vi, vk] such
that d(vm, vk) + lk − xk > xj ≥ d(vm, vk) − lm + lk − xk . Define zp = lp for each
node vp, vp �= vm, on P [vm, vk], zm = xj + xk + lm − d(vm, vk) − lk , zj = 0, and
zs = xs for any other node vs , vs �= vj , vs not on P [vm, vk]. It is easy to check that
wt

∑
vk∈P [vt ,v1)

(lk − zk) ≤ yt , for each vt ∈ V . Note that the number of leaf edges of
minimal connected components in the solution induced by Z is smaller than the respec-
tive number in the solution induced by X. We can replace X by Z and proceed. To
conclude in O(n) steps we will identify X′ as required. 	


The representation of subtrees by the variables xj is not linear. In spite of that fact,
Proposition 3.1 proves that looking for optimal subtrees with respect to an isotone func-
tion of the weighted distances, one obtains connectivity without imposing it explicitly.
(A function is isotone if it is monotone nondecreasing in each one of its variables.) This
argument is formalized in the following corollary.

Corollary 3.1. Consider the problem of selecting a subtree of total length L, containing
v1, and minimizing an isotone function, f (y2, . . . , yn), of the weighted distances {yt },
of the nodes vt ∈ V from the selected subtree. Then the following is a valid formulation
of the problem:

min f (y2, . . . , yn),

s.t. yt = wt

∑

vk∈P [vt ,v1)

(lk − xk), for each vt ∈ V,

0 ≤ xj ≤ lj , j = 2, . . . , n,∑n
j=2 xj ≤ L.
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We can now insert the LP formulations from [24] for the k-centrum and the convex
ordered median objectives. This will provide a compact LP formulation for finding a
continuous subtree rooted at a distinguished point, whose length is at most L, minimizing
a convex ordered median objective. For convenience we define λn+1 = 0.

min
n∑

k=1

(λk − λk+1)(ktk +
n∑

i=1

d+
i,k)

s.t. d+
i,k ≥ yi − tk, d+

i,k ≥ 0, i = 1, . . . , n, k = 1, . . . , n,

yt = wt

∑

vk∈P [vt ,v1)

(lk − xk), for each vt ∈ V,

0 ≤ xj ≤ lj , j = 2, . . . , n,∑n
j=2 xj ≤ L.

(This LP formulation is later used to formulate the continuous strategic model, when the
objective is to minimize the sum of the total length of the selected subtree and the ordered
median function of the weighted distances to the subtree. Specifically, we add the lin-
ear function

∑n
j=2 xj to the objective, and remove the length constraint

∑n
j=2 xj ≤ L.)

The above formulation uses p = O(n2) variables and q = O(n2) constraints. Assuming
integer data, let I denote the total number of bits needed to represent the input. Then,
by [40], the above LP can be solved by using only O(n6 + n5I ) arithmetic operations.
We also note that in the unweighted model, where the distances of all demand points
are equally weighted, all the entries of the constraint matrix can be assumed to be 0, 1
or −1. Therefore, by [39], the number of arithmetic operations needed to solve the un-
weighted version is strongly polynomial, i.e., it is bounded by a polynomial in n, and is
independent of the input size I .

3.2. Finding an optimal tactical subedge

We show here how to find an optimal subedge for the tactical model.As mentioned above,
these are subproblems that we need to consider in the process of finding optimal continu-
ous subtrees. Consider an arbitrary edge of the tree ek = (vs, vt ).We show that an optimal
subedge of ek with respect to the tactical model can be found in O(n log2 n) time.A point
on ek is identified by its distance, x, from the node vs .A subedge of length L, incident to x

is identified by its two endpoints: x and x+L. Let V s be the set of nodes in the component
of T , obtained by removing ek , which contains vs . For each node vi ∈ V s , its weighted
distance from the subedge is given by hi(x, L) = wi(d(vi, vs) + x). For each node
vi ∈ V \ V s , the respective distance is hi(x, L) = wi(d(vi, vt ) + d(vs, vt ) − (x + L)).
In the tactical model L is fixed, and the problem of finding an optimal subedge of ek

of length L reduces to minimizing the single variable, x, ordered median function of a
collection of the linear functions {hi(x, L)}. (The domain is defined by the constraints
x ≥ 0, and x + L ≤ d(vs, vt ) = lk .) The latter task can be performed in O(n log2 n)

time, [16].

Remark 3.1. We note in passing that instead of minimizing over each edge separately,
we can use the convexity of the objective and save by using global minimization. Glob-
ally, the problem reduces to finding a continuous subpath of the tree of length smaller
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than or equal to L, which minimizes the ordered median objective. (In this tactical con-
tinuous subpath model, the objective can be expressed in a way that makes it convex
over each path of the tree. Specifically, restricting ourselves to a path of T , and using
x as a single variable point along the path, each function hi(x, L) becomes a single
variable, x, piecewise linear convex function with three pieces. The respective slopes
are {−wi, 0, wi}.) We will discuss this model in a sequel paper focusing on path-shaped
facilities.

To evaluate the overall time complexity of our algorithm for the continuous tactical
problem, we note that we solve n linear programs, and find n − 1 optimal subedges.
Therefore, the total complexity is O(n7 + n6I ).

4. Strategic subtree with convex ordered median objective

Unlike the tactical model, we will show in this section that the strategic discrete subtree
problem with convex ordered median objective is solvable in polynomial time. Specifi-
cally, we will formulate this discrete model as a minimization problem of a submodular
function over a lattice. But first we consider the continuous version, and show how to
solve it, using LP techniques. We assume that the objective function is the sum of the
convex ordered median function and the total length of the selected subtree. The argu-
ment used above for the tactical continuous subtree problem, proves that it is sufficient
to consider only two types of (strategic) subproblems. The first type corresponds to a
subproblem where the optimal subtree must contain a distinguished node. In the second
type the optimal subtree is a subedge of a given edge.

4.1. Finding an optimal strategic continuous subtree containing a given node

We use the notation in the above section dealing with the tactical continuous subtree
problem. In particular, we assume that the optimal subtree must contain v1, the root of
the tree T .

From the discussion above we conclude that this restricted version of the strategic
continuous problem can be formulated as the following compact linear program:

min
n∑

k=1

(λk − λk+1)(ktk +
n∑

i=1

d+
i,k) + α

n∑

j=2

xj

s.t. d+
i,k ≥ yi − tk, d+

i,k ≥ 0, i = 1, . . . , n, k = 1, . . . , n,

yt = wt

∑

vk∈P [vt ,v1)

(lk − xk), for each vt ∈ V,

0 ≤ xj ≤ lj , j = 2, . . . , n.

4.2. Finding an optimal strategic subedge

We use the same notation as in the subsection on finding the tactical subedge. In the case
of the strategic model L is variable, and the problem of finding an optimal subedge of
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ek reduces to minimizing the 2-variable, {x, L}, ordered median function of a collection
of the linear functions {hi(x, L)}. The feasible set for this problem is defined by the
constraints 0 ≤ x, 0 ≤ L, and x + L ≤ d(vs, vt ) = lk . This 2-dimensional minimi-
zation can be performed in O(n log4 n) time, [16]. By the analysis used above for the
tactical model, it is easy to see that the overall time complexity of our algorithm for the
continuous strategic problem is also O(n7 + n6I ).

4.3. Submodularity of convex ordered median functions

To solve the strategic discrete subtree problem we first prove a submodularity property
of the convex ordered median objective.

Let a = (ai), b = (bi), be vectors in R
n. Define the meet of a, b to be the vector

a
∧

b = (min[ai, bi]), and the join of a, b by a
∨

b = (max[ai, bi]). The meet and
join operations define a lattice on R

n. Also, for any vector a ∈ R
n and k = 1, . . . , n,

define a(k) to be the k-th largest component of a, and Sk(a) to be the sum of the k largest
components of a, i.e., Sk(a) = ∑k

t=1 a(t).

Theorem 4.1 (Submodularity Theorem). Given is a vector � = (λ1, . . . , λn), satisfy-
ing λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. For any a ∈ R

n define the function f (a) = ∑n
i=1 λia(i).

Then, f (a) is submodular over the lattice defined by the above meet and join operations,
i.e., for any pair of vectors a, b in R

n,

f (a
∨

b) + f (a
∧

b) ≤ f (a) + f (b).

Proof. To prove the above theorem we first observe that

f (a) =
n∑

k=1

(λk − λk+1)Sk(a).

(For convenience we set λn+1 = 0.) Hence, it is sufficient to prove that for any k =
1, . . . , n,

Sk(a
∨

b) + Sk(a
∧

b) ≤ Sk(a) + Sk(b). (3)

Given a pair of vectors a and b in R
n, let c = a

∧
b and d = a

∨
b. To prove the

submodularity inequality for Sk(a), it will suffice to prove that for any subset C′ of k

components of c, and any subset D′ of k components of d, there exist a subset A′ of
k components of a and a subset B ′ of k components of b, such that the sum of the 2k

elements in C′ ∪ D′ is smaller than or equal to the sum of the 2k elements in A′ ∪ B ′.
Formally, we prove the following claim:

Claim: Let I and J be two subsets of {1, 2, ..., n}, with |I | = |J | = k. There exist two
subsets I ′ and J ′ of {1, 2, . . . , n}, with |I ′| = |J ′| = k, such that

∑

i∈I

ci +
∑

j∈J

dj ≤
∑

s∈I ′
as +

∑

t∈J ′
bt .
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Proof of Claim. Without loss of generality suppose that ai �= bi for all i = 1, . . . , n.
Let Ia = {i ∈ I : ci = ai}, Ib = {i ∈ I : ci = bi}, Ja = {j ∈ J : dj = aj }, and
Jb = {j ∈ J : dj = bj }. Since ai �= bi for i = 1, . . . , n, we obtain |Ia| + |Ib| =
|Ja| + |Jb| = k, Ia and Ja are mutually disjoint, and Ib and Jb are mutually disjoint.
Therefore, if |Ia| + |Ja| = k, (which in turn implies that |Ib| + |Jb| = k), the claim
holds with equality for I ′ = Ia ∪ Ja , and J ′ = Ib ∪ Jb. Hence, suppose without loss
of generality that |Ia| + |Ja| > k, and |Ib| + |Jb| < k. Define I ′′ = Ia ∪ Ja , and
J ′′ = Ib ∪ Jb. Let K = I ′′ ∩ J ′′. |I ′′| > k, and |J ′′| < k. We have

∑

i∈I

ci +
∑

j∈J

dj =
∑

i∈K

(ai + bi) +
∑

s∈I ′′\K
as +

∑

t∈J ′′\K
bt . (4)

On each side of the last equation we sum exactly k components from c, (“minimum
elements"), and k components from d , (“maximum elements"). Moreover, the set of
components {as : s ∈ I ′′ \ K} ∪ {bt : t ∈ J ′′ \ K} contains exactly k − |K| minimum
elements and exactly k −|K| maximum elements. In particular, the set {as : s ∈ I ′′ \K}
contains at most k−|K| maximum elements. Therefore the set {as : s ∈ I ′′ \K} contains
at least q = |I ′′| − |K| − (k − |K|) = |I ′′| − k minimum elements. Let I ∗ ⊂ I ′′ \ K ,
|I ∗| = q, denote the index set of such a subset of minimum elements. We therefore have,

ai ≤ bi, i ∈ I ∗. (5)

Note that from the construction I ∗ and J ′′ are mutually disjoint. Finally define I ′ =
I ′′ \ I ∗ and J ′ = J ′′ ∪ I ∗, and use (4) and (5) to observe that the claim is satisfied for
this choice of sets. 	


We next use the submodularity property to claim that the strategic discrete subtree
ordered median problem is solvable in strongly polynomial time, i.e., the total num-
ber of arithmetic operations is polynomial in n and independent of the input size I .
First note that the set of all subtrees containing a distinguished point of the tree forms
a lattice. For each subtree S of T , consider the vector a(S) = (ai(S)) in R

n, where
ai(S) = wid(vi, S), i = 1, . . . , n. Define

f (S) =
n∑

i=1

λia(i)(S).

( a(i)(S) denotes the i-th largest element in the set {a1(S), . . . , an(S)}.) We now demon-
strate that f (S) is submodular over the above lattice. Let S1 and S2 be a pair of subtrees
with nonempty intersection. Then, from [31], we note that

wid(vi, S1 ∪ S2) = wi min[d(vi, S1), d(vi, S2)],

wid(vi, S1 ∩ S2) = wi max[d(vi, S1), d(vi, S2)].

Then, min[ai(S1), ai(S2)] = wid(vi, S1 ∪ S2) and max[ai(S1), ai(S2)] = wid(vi, S1 ∩
S2). Applying the above Submodularity Theorem we conclude that f (S), the convex
ordered median objective, defined on this lattice of subtrees, is submodular, i.e.,

f (S1 ∪ S2) + f (S1 ∩ S2) ≤ f (S1) + f (S2).
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With the above notation the objective function of the strategic problem is f (S)+αL(S).
From [31] we note that the length function L(S) is modular and the diameter function
D(S) is submodular. Thus, any linear combination with nonnegative coefficients, of the
functions f (S), L(S), and D(S) is submodular. Therefore, we can also add the diameter
function to the objective and preserve the submodularity. Specifically, we can extend the
objective function of the discrete strategic model to

f (S) + αL(S) + βD(S),

where β is a nonnegative real. In addition to the ellipsoidal algorithms, [11], there are
now combinatorial strongly polynomial algorithms to minimize a submodular function
over a lattice, [18]. The best complexity for a strongly polynomial algorithm, according
to [18], is O(n4OE) in [11], (quoted from [27]), where OE is the time to compute the
submodular function.

It is easy to check that for the strategic discrete subtree problem with a convex
ordered median function OE = O(n log n). Therefore, minimizing over each lattice
family (subtrees containing a distinguished node) takes O(n5 log n). Solving the discrete
strategic subtree ordered median problem will then take O(n6 log n)!!! (For comparison
purposes, the special case of the discrete k-centrum objective is solved in the next section
in O(kn3) = O(n4) time.)

To solve the continuous strategic model by the above approach where we use the
submodularity, we would need to discretize the problem. (Otherwise, even if we assume
rational data, the cardinality of the set of subtrees will be exponential in the input size,
and not just in the number of nodes.) We do not know of any polynomial discretization
for the general convex ordered median objective. As proved in Section 5.4, for the case
of the k-centrum objective, when the size of the subtree is its length, we can discretize
the problem by augmenting O(n3) points to the node set.

4.4. Corollaries and related extensions

The problem above can be generalized by replacing the sum of weighted distances by
the sum of transportation cost functions of the nodes (demand points) to the subtree
(facility). Indeed, let fi , i = 1, . . . , n, be real isotone functions. We consider S1, S2 two
subtrees of the given lattice. (Subtrees containing a distinguished node.) Then, it is clear
that

gi(S1 ∪ S2) := fi(d(vi, S1 ∪ S2)) = fi(d(vi, S1) ∧ d(vi, S2))

= min[fi(d(vi, S1)), fi(d(vi, S2))],

gi(S1 ∩ S2) := fi(d(vi, S1 ∩ S2)) = fi(d(vi, S1) ∨ d(vi, S2))

= max[fi(d(vi, S1)), fi(d(vi, S2))].

These inequalities allow us to apply Theorem 4.1 to the function:

g(S) =
n∑

i=1

λig(i)(S), where gi(S) = fi(d(vi, S)); i = 1, . . . , n.
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(g(i)(S) is the i-th largest element in the set {g1(S), . . . , gn(S)}.) Thus, we conclude
that g(S) is submodular on the considered lattice of subtrees.

A special case of the above extension is the conditional version of our model, defined
as follows. It is assumed that there are already facilities established at some closed subset
Y ′ of A(T ). If we select a subtree S as the new facility to be setup, then each demand
point vi will be served by the closest of S and Y ′. Hence, the respective transportation
cost function is given by gi(S) = wi min[d(vi, S), d(vi, Y

′)].
We can extend further the result on submodularity to the case where customers are

represented by subtrees instead of nodes. Let us assume that we are given a family of

subtrees T i = (V i, Ei), i = 1, . . . , t , such that
t⋃

i=1

V i = V . For each subtree S of T

consider the vector b(S) = (bi(S)) ∈ R
t , where bi(S) = wid(T i, S), i = 1, . . . , t . (In

particular, when each T i = ({vi}, ∅), i = 1, . . . , n, we get the customer-node model.)
Define

g(S) =
t∑

i=1

λib(i)(S).

(b(i)(S) is the i-th largest element in the set {b1(S), . . . , bt (S)}.) If S1, S2 is a pair of
subtrees with non-empty intersection, then we note that

wid(T i, S1 ∪ S2) = wi min[d(T i, S1), d(T i, S2)] = min[bi(S1), bi(S2)],

wid(T i, S1 ∩ S2) = wi max[d(T i, S1), d(T i, S2)] = max[bi(S1), bi(S2)].

Once more, we can apply our submodularity Theorem 4.1 to conclude that g(S) is
submodular over the considered lattice of subtrees.

5. The special case of the subtree k-centrum problem

In this section we focus on the special case of the k-centrum objective. Recall that the
k-centrum objective value for a subtree S is given by the sum of the k largest elements
in X(S) = {w1d(v1, S), . . . , wnd(vn, S)}, the set of weighted distances from S. We
consider the strategic discrete and continuous subtree k-centrum problems, and show
how to solve them polynomially using dynamic programming techniques. We prove that
the discrete version is solvable in cubic time for any fixed k, and we also extend the same
recursive approach to the continuous version of the problem. As noted above the tactical
discrete model is NP-hard. The tactical continuous model is polynomially solvable, as a
special case of the convex ordered median problem discussed above. However, we can
do better for the k-centrum objective case. We will show in the next subsections that it is
sufficient to solve only one subproblem where the selected subtree must contain a point
k-centrum of the tree. (Recall that a point k-centrum is a solution to the tactical model
when the length of the subtree is zero.)

5.1. Nestedness property for the strategic discrete k-centrum problem

We are interested in studying whether there exists a distinguished point, e.g., an opti-
mal solution to the point k-centrum problem, that must be included in some optimal
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solution to the subtree k-centrum problem. We call this property nestedness. Before we
study the nestedness property for the strategic discrete model we first observe that the
discrete tactical k-centrum problem does not have the nestedness property with respect
to the point solution. Indeed, it can be seen that even for the regular median objective,
n-centrum, the property fails to be true, as shown by the following example on the line:
v1 = 0, v2 = 2, v3 = v2 + 1/4, and v4 = v3 + 1. w1 = 2 and wi = 1 for i = 2, 3, 4.

The unique solution for the tactical discrete problem with L = 0 is v2, and the unique
solution for the tactical discrete problem with L = 1 is the edge (v3, v4).

This negative result leads us to investigate the strategic discrete k-centrum problem.
We will show that a nestedness property holds for this model.

Theorem 5.1. Let v′ be an optimal solution for the continuous point k-centrum problem.
If v′ is a node, there is an optimal solution to the strategic discrete subtree k-centrum
problem which contains v′. If v′ is not a node there is an optimal solution which contains
one of the two nodes of the edge containing v′.

Proof. Let v1, . . . , vt be the set of nodes which are neighbors of v′. (If v′ is not a
node then it has only two neighbors, say v1, v2.) Suppose the tree is rooted at v′. Let
T 1, . . . , T t be the components rooted respectively at v1, . . . , vt . Let d(v′) be the k-th
weighted largest distance from v′.

Let T ′ be an optimal discrete subtree which does not satisfy the property stated in
the theorem. Without loss of generality, suppose that T ′ is in T 1, and let x be the node
in T ′ closest to v′. (x is the root of T ′.)

For each subtree S, let F(S) denote the objective value of the strategic k-centrum
problem at S, and let U(S) denote a set of k nodes corresponding to the k largest weighted
distances of nodes from S. (α will denote the coefficient of the length of the subtree in
the objective.) Let z �= v′ be a point of the tree, which is either on the path P [v′, v1] or
z ∈ T 1. Let T (z) denote the subtree rooted at z, and induced by all the descendants of z.
We also define U1

z (S) = U(S) ∩ T (z). (To simplify the notation, if a subtree S consists
of a single point, say S = {y}, we define U(y) = U({y}) and U1

z (y) = U1
z ({y}).)

From the optimality of v′ we conclude that the derivative of the k-centrum objective
is nonnegative in the direction of v1, the root of T 1. To evaluate this derivative, we
assume without loss of generality, that if v′′ is a point on the path (subedge) P [v′, v1],
sufficiently close to v′, the ordering of the k largest weighted distances from any point
z on P [v′, v′′] is fixed and independent of the point. In particular, the k-centrum objec-
tive is linear on P [v′, v′′]. We can therefore assume that U(z) is identical for all z in
P [v′, v′′], i.e., U(z) = U(v′).

Suppose that k1 of the nodes inU(v′) are inT 1, and k2 are outsideT 1 with k1+k2 = k.
Let W1 denote the total weight of the k1 nodes in T 1, and let W2 denote the total weight
of the other k2 nodes.

From optimality we have
W2 ≥ W1.

Case I. α ≤ W2.
Consider an arbitrary point y �= v′ on P [v′, x]. Let T ′(y) be the subtree obtained from
T ′ by augmenting P [y, x], and let f (y) = F(T ′(y)) denote the objective value at
T ′(y). Also, let f ′(y) be the derivative of f (y) in the direction of v′. We will show
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that f ′(y) ≤ α − W2. ( Since α − W2 ≤ 0, this will prove that f (y), the objective
value at T ′(y), is a monotone function of y, along P [v′, x], attaining its minimum at v′.
Therefore, the statement of the theorem will hold in this case.)

Consider U(v′), the set of nodes corresponding to the k largest weighted distances
of nodes from v′. Decompose U(v′) into three subsets:

U1
y (v′), the subset of U(v′) corresponding to nodes in T (y);

U2(v′), the subset of U(v′) corresponding to nodes in T \ T 1; and
U3(v′) = U(v′) \ U1

y (v′) \ U2(v′).

We have |U2(v′)| = k2.
Next consider U(T ′(y)), a set of k nodes corresponding to the k largest weighted

distances from the subtree T ′(y). (If U(T ′(y)) is not uniquely defined we select a solu-
tion where |U(T ′(y)) ∩ U2(v′)| is maximized.) Without loss of generality we assume
that y is an interior point. We also assume that for all points u which are outside T (y),
and sufficiently close to y, the ordering of the weighted distances of nodes outside T (y)

from u, is fixed and independent of u. If U2(v′) ⊂ U(T ′(y)), then we clearly have

f ′(y) ≤ α − W2.

Hence, suppose that U2−(y), defined by U2−(y) = U2(v′) \ U(T ′(y)), is nonempty,
and let q = |U2−(y)|. Consider a node vi ∈ U2−(y). It satisfies wid(vi, T

′) ≥ d(v′),
which in turn implies, in view of the maximality property of |U(T ′(y)) ∩ U2(v′)|, that
U(T ′(y)) contains at most |U1

y (v′)| nodes from T (y). (For each node vj ∈ T (y)\U1
y (v′),

we have wjd(vj , T
′) ≤ wjd(vj , v

′) ≤ d(v′).) Hence, U(T ′(y)) should include at
least |U2(v′)| + |U3(v′)| nodes from T \ T (y). Therefore, U(T ′(y)) contains at least
q = |U2−(y)| nodes in T \ T (y), which are not in U2(v′) ∪ U3(v′). Let U2+(y) denote
such a set of q nodes.

To complete the proof of Case I, it is sufficient to show that for each node vj ∈ U2+(y),
we have

wj ≥ w′ = max
vi∈U2−(y)

wi,

since the latter would imply

f ′(y) ≤ α −
∑

vi∈U(T ′(y))∩U2(v′)

wi −
∑

vj ∈U2+(y)

wj

≤ α −
∑

vi∈U(T ′(y))∩U2(v′)

wi −
∑

vi∈U2−(y)

wi

≤ α −
∑

vi∈U2(v′)

wi = α − W2.

Indeed, let vj ∈ U2+(y), and vi ∈ U2−(y). From the definition vi ∈ U2(v′) \ U(T ′(y))

and vj ∈ U(T ′(y)) \ U(v′). We have

wjd(vj , v
′) ≤ d(v′) ≤ wid(vi, v

′),
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and
wjd(vj , y) ≥ wid(vi, y).

We note that vi ∈ T \ T 1. Also, vj ∈ T \ T 1 or vj ∈ T 1 \ T (y). Therefore, the above
inequalities imply

wj ≥ wi.

This completes the proof of Case I.

Case II. α > W2. We will show that in this case, the objective value does not increase
if we shrink T ′ to its root x.

Assume that the length of T ′ is L, i.e., L(T ′) = L.
We introduce the following notation. Denote by Dj(T ′), (respectively Dj(x)), j =

1, . . . , t , the sum of the weighted distances to T ′, (respectively x), from all the nodes
in T j that contribute to the k-centrum objective with respect to T ′, (respectively x).
We decompose D1(T ′), (respectively D1(x)), into two terms: OD1(T ′), (respectively
OD1(x)), the sum of weighted distances that correspond to nodes in T 1 \ T (x), and
ID1(T ′), (respectively ID1(x)), the sum of weighted distances that correspond to nodes
in T (x).

Using the above notation, U1
x (T ′), (respectively U1

x (x)), is the set of the nodes asso-
ciated with the weighted distances in ID1(T ′) (respectively in ID1(x)). (In case of ties,
if the sets U1

x (T ′) and U1
x (x) are not uniquely defined, we select them arbitrarily.) We

have,

F(T ′) − F({x}) = OD1(T ′) + ID1(T ′) +
t∑

j=2

Dj(T ′) + αL

−(OD1(x) + ID1(x) +
t∑

j=2

Dj(x)).

To complete the proof of Case II, we will prove that F(T ′)−F({x}) ≥ 0. We first make
several useful observations. (Note that F1-F4 follow directly from the definitions.)

FACTS:

F1: Dj(T ′) ≥ Dj(x), j = 2, . . . , t .
F2: OD1(T ′) ≥ OD1(x).
F3: p = |U1

x (T ′)| ≤ |U1
x (x)| = q ′ ≤ k1.

F4: For any subset A ⊂ U1
x (x), |A| = p,

∑
vj ∈A wjd(vj , T

′) ≤ ID1(T ′).
F5: The sum of the weights of all the nodes that contribute to ID1(x) is smaller than

or equal to W1, i.e.,
∑

vj ∈U1
x (x) wj ≤ W1.

To prove F5 consider F({v′}), the k-centrum objective at the (degenerate) subtree
consisting only of the point v′. U1

v1(v
′) is the set of k1 nodes in T 1 which contribute to

F({v′}). In particular,
∑

vj ∈U1
v1 (v′) wj = W1. Since |U1

x (x)| = q ′ ≤ k1, it is sufficient

to prove the following claim.
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Claim: Suppose that U1
v1(v

′) \ U1
x (x) is nonempty and let vi ∈ U1

v1(v
′) \ U1

x (x) satisfy

wi = minvj ∈U1
v1 (v′)\U1

x (x) wj . Then wj ≤ wi , for each vj ∈ U1
x (x) \ U1

v1(v
′).

To prove the claim, let ui be the closest point to vi on P [x, v′]. Then,

wj(d(vj , x) + d(ui, v
′)) ≤ wjd(vj , v

′) ≤ wi(d(vi, ui) + d(ui, v
′)),

and

wjd(vj , x) ≥ wi(d(vi, ui) + d(ui, x)) ≥ wid(vi, ui).

The above inequalities imply wjd(ui, v
′) ≤ wid(ui, v

′). Since v′ is not in T 1, we have
d(ui, v

′) > 0, and therefore wj ≤ wi , as claimed.

F6: If p = q ′, then from F4-F5 we have

ID1(x) =
∑

vj ∈U1
x (x)

wjd(vj , x) ≤
∑

vj ∈U1
x (x)

wjd(vj , T
′) + L

∑

vj ∈U1
x (x)

wj

≤ ID1(T ′) + W1L.

F7: If p = q ′, then from F1, F2 and F6 we have

F(T ′) − F({x}) ≥ ID1(T ′) + αL − ID1(x) ≥ (α − W1)L ≥ 0.

Suppose that r = q ′ − p > 0. Then |U1
x (x)| = |U1

x (T ′)| + r . Consider a set of r

distinct nodes, {vi1 , . . . , vir } in U1
x (x) \ U1

x (T ′). Thus, there exist r distinct nodes in
T \ T (x), {vj1 , . . . , vjr }, such that these nodes contribute to the objective value F(T ′)
but not to F({x}). (For s = 1, . . . , r , wjs d(vjs , T

′) = wjs d(vjs , x) is one of the k-
largest weighted distances from T ′, but it is not one of the selected k-largest weighted
distances from x.) In particular, we have

wimd(vim, T ′) ≤ min
s=1,... ,r

wjs d(vjs , T
′),

for each m = 1, . . . , r , and

t∑

j=2

Dj(T ′) + OD1(T ′) =
t∑

j=2

Dj(x) + OD1(x) +
r∑

s=1

wjs d(vjs , T
′). (6)
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Moreover, using also the fact that d(vj , x) ≤ d(vj , T
′) + L, for any vj ∈ T (x), and

F4-F5, we obtain

ID1(x) =
∑

vj ∈U1
x (x)\{vi1 ,... ,vir }

wjd(vj , x) +
r∑

s=1

wis d(vis , x)

≤ L
∑

vj ∈U1
x (x)

wj +
∑

vj ∈U1
x (x)\{vi1 ,... ,vir }

wjd(vj , T
′) +

r∑

s=1

wis d(vis , T
′)

≤ L
∑

vj ∈U1
x (x)

wj +
∑

vj ∈U1
x (x)\{vi1 ,... ,vir }

wjd(vj , T
′) +

r∑

s=1

wjs d(vjs , T
′)

≤ W1L + ID1(T ′) +
r∑

s=1

wjs d(vjs , T
′)

≤ αL + ID1(T ′) +
r∑

s=1

wjs d(vjs , T
′).

Finally, combining the last upper bound on ID1(x) with equation (6), we obtain

F(T ′) − F({x}) = OD1(T ′) + ID1(T ′) +
t∑

j=2

Dj(T ′) + αL

−(OD1(x) + ID1(x) +
t∑

j=2

Dj(x)) ≥ 0.

This completes the proof for Case II. 	

It is easy to verify that the above proof also validates the following nestedness prop-

erty of the continuous model.

Theorem 5.2. Let v′ be an optimal solution for the continuous point k-centrum prob-
lem. There is an optimal solution to the strategic continuous subtree k-centrum problem
which contains v′.

Following the above theorems we note that an optimal solution to the continuous point
k-centrum problem can be found in O(n log n) time by the algorithm in [16].

5.2. Nestedness property for the tactical continuous k-centrum problem

We illustrated in the previous subsection that the strategic discrete subtree k-centrum
problem possesses nestedness property which does not extend to the tactical version of
the model. We will now use the proof of that result to show that the tactical continuous
subtree k-centrum problem has this property. We will use the notation of the previous
subsection.
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Theorem 5.3. Let v′ be an optimal solution to the continuous point k-centrum prob-
lem. Then there exists an optimal solution to the tactical continuous subtree k-centrum
problem which contains v′.

Proof. We use the notation from the proof of Theorem 5.1 in the previous subsection.
Let T ′ be an optimal continuous subtree which does not satisfy the property stated in the
theorem. Without loss of generality, suppose that T ′ is in T 1 ∪ P(v′, v1], and let x be
the closest point to v′ in T ′. (x is the root of T ′.) Also suppose that amongst all subtrees
with these qualifications, T ′ has the root which is closest to v′. Note that L(T ′) = L.

To prove the theorem we will perturb the tree T ′ at its root x and at one of its leaves
x′′, chosen appropriately, by a small and positive δ to obtain a perturbed tree T ′′ of length
L. Specifically, T ′′ is obtained from T ′ by decreasing the length of the unique subedge
of T ′ which is incident to x′′, by δ, and by augmenting to T ′ the path P [x, y], where y

is the point on P [x, v′] satisfying d(x, y) = δ. Denoting by G(T ′) and G(T ′′) the sums
of the k largest weighted distances of nodes from T ′ and T ′′, respectively, we will show
that G(T ′′) − G(T ′) ≤ 0.

We now show how to choose the appropriate leaf x′′. Recall that U1
x (v′) is the set of

nodes in T (x) that contribute to the k-centrum objective at v′, and U1
x (T ′) is the set of

nodes in T (x) that contribute to the k-centrum at T ′. Therefore,

|U1
x (T ′)| ≤ |U1

x (v′)|.

The set of nodes U1
x (T ′) may not be uniquely defined. Nevertheless, without loss of

generality, we make the following nondegeneracy assumption on U1
x (T ′). Let Y denote

the set of leaves of T ′. For each y ∈ Y let ey be the unique subedge of T ′ incident to
y. Suppose that there are ky ≥ 0 nodes in T (y) that contribute to the k-centrum objec-
tive at T ′. If they are not uniquely defined we select them as follows: Due to the fact
that all weighted distance functions are piecewise linear, there is a point y′ �= y, suffi-
ciently close to y, on ey , such that no pair of functions in the collection of linear functions
{hj (z) = wjd(vj , z) : vj ∈ T (y)} has an interior intersection point in the path P [y, y′].
In particular, the ordering of these linear functions is independent of z. We assume that
the ky nodes in T (y) contributing to the k-centrum objective at T ′, correspond to the ky

largest functions over P [y, y′] in the above collection. In addition, suppose that there are
kx ≥ 0 nodes in T \ T (x) that contribute to the k-centrum objective at T ′. By the above
argument, there is a point x∗ �= x, sufficiently close to x on P [x, v′], such that no pair of
linear functions in the collection {gj (z) = wjd(vj , z) : vj ∈ T \ T (x)} has an interior
intersection point in P [x, x∗]. We assume that the kx nodes in T \ T (y) contributing to
the k-centrum objective at T ′, correspond to the kx largest functions over P [x, x∗] in
the above collection.

We distinguish two cases.

1. (U1
x(T

′) = U1
x(v

′)) In this case we choose x′′ to be any arbitrary leaf of T ′. Let δ

be sufficiently small, and consider the change in the weighted k-centrum objective
when we perturb T ′ at both, the root x and the leaf x′′. By the above nondegeneracy
assumption, this change is linear in δ. Moreover, this change is the sum of the vari-
ations at x and x′′. From the discussion in Case I of the proof of Theorem 5.1, we
conclude that the variation at x in the direction of v′ is less than or equal to −δW2.
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Using again the nondegeneracy assumption and the fact that U1
x (T ′) = U1

x (v′), the
variation at x′′ in the direction of v′ is less than or equal to δ

∑
vj ∈U1

x (v′) wj ≤ δW1.

Hence, G(T ′′) − G(T ′) ≤ δ(W1 − W2) ≤ 0, contradicting the property that T ′ has
the closest root to v′ amongst all optimal subtrees of length L.

2. (U1
x(T

′) �= U1
x(v

′)) In this case we arbitrarily select a node vi ∈ U1
x (v′) \ U1

x (T ′),
satisfying

wi = min{wj : vj ∈ U1
x (v′) \ U1

x (T ′)}.
Let x′ be the closest point to vi in T ′. x′ is on P [vi, v

′], the unique path connecting
vi and v′. (Note that x′ is not necessarily a leaf of T ′, even when x′ �= vi .) Define

V (T (x′)) = {vj ∈ T (x′) : vj ∈ U1
x (T ′) \ U1

x (v′)}.

We make the following claim.

Claim: For each vj ∈ V (T (x′)), wj ≤ wi .
To prove the claim note that for vj ∈ V (T (x′)), we have

wi(d(vi, x
′) + d(x′, v′)) ≥ wj(d(vj , x

′) + d(x′, v′)),

and

wid(vi, x
′) ≤ wjd(vj , T

′) ≤ wjd(vj , x
′).

The above inequalities clearly imply wid(x′, v′) ≥ wjd(x′, v′), which proves the
claim.
Suppose first that V (T (x′)) is empty. In this case all the nodes in T (x′) that con-
tribute to F(T ′) are in U1

x (v′). Select an arbitrary leaf x′′ of T ′ in T (x′). Decrease
the length of the subedge incident to x′′ by a small δ, and perturb T ′ at x by δ.
From the above arguments, the net effect on the objective value is bounded above
by −δW2 + δ

∑
vj ∈U1

x (v′) wj ≤ δ(W1 − W2), and therefore

G(T ′′) − G(T ′) ≤ δ(W1 − W2) ≤ 0.

Next suppose that V (T (x′)) is nonempty. Select an arbitrary leaf x′′ of T ′ in T (x′).
Again, decrease the length of the subedge incident to x′′ by a small δ, and perturb
T ′ at x by δ. The net effect on the objective value is bounded above by δ(B − W2),
where

B =
∑

vj ∈U1
x (v′)∩U1

x (T ′),vj ∈T (x′)

wj +
∑

vj ∈U1
x (T ′)\U1

x (v′),vj ∈T (x′)

wj . (7)

B1, the first term in expression (7) is bounded above by

∑

vj ∈U1
x (v′)∩U1

x (T ′)

wj .
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Using the above claim, and the fact that |U1
x (T ′)| ≤ |U1

x (v′)|, we note that B2, the
second term in expression (7), is bounded above by

|U1
x (T ′) \ U1

x (v′)|wi ≤ |U1
x (v′) \ U1

x (T ′)|wi ≤
∑

vj ∈U1
x (v′)\U1

x (T ′)

wj .

Thus, B ≤ ∑
vj ∈U1

x (v′) wj ≤ W1. Therefore, we conclude that

G(T ′′) − G(T ′) ≤ δ(W1 − W2) ≤ 0.

The proof is now complete.

	

Remark 5.1. A nestedness property for the continuous tactical model implies the result
for the continuous case of the strategic version. Thus, the last theorem provides an
alternative proof of Theorem 5.2.

From the above nestedness result we can assume that an optimal subtree to the tactical
continuous k-centrum problem is rooted at some known point of the tree. Without loss
of generality suppose that this point is the node v1. Therefore, using the formulation in
Section 3.1, the problem reduces to a single linear program. Moreover, since λi = 1 for
i = 1, ...k, and λi = 0 for i = k + 1, . . . , n, the formulation has only O(n) variables
and O(n) constraints:

min ktk +
n∑

i=1

d+
i,k

s.t. d+
i,k ≥ yi − tk, d+

i,k ≥ 0, i = 1, . . . , n,

yt = wt

∑

vq∈P [vt ,v1)

(lq − xq), for each vt ∈ V,

0 ≤ xj ≤ lj , j = 2, . . . , n,∑n
j=2 xj ≤ L.

We conclude that the overall time complexity to solve the continuous tactical k-centrum
problem is O(n3 + n2.5I ).

5.3. A dynamic programming algorithm for the strategic discrete subtree
k-centrum problem

In this section we present a dynamic programming bottom-up algorithm to solve the
strategic discrete subtree k-centrum problem when the selected subtree is restricted to
contain a distinguished node, say v1. From the nestedness results proved above, we know
that solving at most two such restricted subproblems will suffice for the solution of the
unrestricted problem.

We follow the approach in [32], and assume without loss of generality that the tree
T is binary and rooted at v1. (If a node vi is not a leaf its two children are denoted
by vi(1) and vi(2)). Also, following the arguments in [34], we assume without loss of
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generality that all weighted distances between pairs of nodes are distinct. For the sake
of readability, we recall that Vi is the set of descendants of vi , Ti is the subtree induced
by Vi , and T +

i is the subtree induced by Vi ∪ {p(vi)}. (See Section 2.)
Define Gi(q, r) to be the optimal value of the objective of the subproblem with a sub-
tree rooted at vi restricted to Ti , (we take the sum of the q largest weighted distances),
when the q-th largest weighted distance is exactly r . (If there is no feasible solution set
Gi(q, r) = +∞.)
Define G+

i (q, r) to be the optimal value of the objective of the subproblem with a sub-
tree rooted at vi restricted to Ti , when the q-th largest weighted distance is greater than
r , and the (q + 1)-st largest weighted distance is smaller than r .(If there is no feasible
solution set G+

i (q, r) = +∞.)
Define Ai(q, r) to be the sum of the q largest weighted distances of nodes in T \ Ti to
vi , when the q-th largest is exactly r . (In case there is no such set, let Ai(q, r) = +∞.)
Define A+

i (q, r) as above, with the condition that the q-th largest is greater than r , and
the (q + 1)-st is smaller than r . (If there is no feasible solution set A+

i (q, r) = +∞.)
Define Bi(1, q, r) to be the sum of the q largest weighted distances of nodes in Vi(1)∪{vi}
to vi , when the q-th largest is exactly r . (In case there is no such set, let Bi(1, q, r) =
+∞.)
Define Bi(2, q, r) to be the sum of the q largest weighted distances of nodes in Vi(2)∪{vi}
to vi , when the q-th largest is exactly r . (In case there is no such set, let Bi(2, q, r) =
+∞.)
Define B+

i (1, q, r) to be the sum of the q largest weighted distances of nodes in Vi(1) ∪
{vi} to vi , with the condition that the q-th largest is greater than r , and the (q + 1)-st is
smaller than r . (In case there is no such set, let B+

i (1, q, r) = +∞.)
Define B+

i (2, q, r) to be the sum of the q largest weighted distances of nodes in Vi(2) ∪
{vi} to vi , with the condition that the q-th largest is greater than r , and the (q + 1)-st is
smaller than r . (In case there is no such set, let B+

i (2, q, r) = +∞.)

Remark. For convenience the 0-th largest weighted distance is +∞, and for each i, in
the definition of Gi , G+

i , Bi and B+
i , for any q > |Vi |, the (q + 1)-th largest distance is

−∞. A similar convention is used for Ai and A+
i .

In the above definitions the parameter r is restricted to the set R∗ = {wid(vi, vj )},
vi, vj ∈ V . (Note that r = 0 is an element of R∗.) With the above notation, the optimal
objective value for the strategic discrete subtree problem, when the subtree is rooted at
v1, is

OV1 = min
r∈R∗ G1(k, r).

It is convenient to consider the case r = 0 separately. G1(k, 0) is the optimal value when
the k-th largest weighted distance is equal to 0. Hence, for any p ≥ k, the p-th largest
weighted distance is equal to 0. Therefore, the problem reduces to finding a subtree,
rooted at v1, which contains at least n+1−k nodes, and minimizes the sum of weighted
distances of all nodes to the subtree and the length of the subtree. This problem can be
phrased as a special case of the model considered in [14]. (See also [6–8].) In particular,
using the algorithm in [14], G1(k, 0) can be computed in O(kn) time.



22 J. Puerto · A. Tamir

Recursive Equations for Gi(q, r) and G+
i (q, r) when r > 0

Gi(q, r): Without loss of generality suppose that r > 0 is the weighted distance of
some node vj ∈ Vi(1) from the selected subtree.

If the subtree does not include the edges (vi, vi(1)) and (vi, vi(2)), then the best value
is

Ci = min
1≤q1≤q

{Bi(1, q1, r) + B+
i (2, q − q1, r)}.

If the subtree includes the edge (vi, vi(1)) but not (vi, vi(2)), then the best value is

Di = αd(vi, vi(1)) + min
1≤q1≤q

{Gi(1)(q1, r) + B+
i (2, q − q1, r)}.

If the subtree includes the edge (vi, vi(2)) but not (vi, vi(1)), then the best value is

Ei = αd(vi, vi(2)) + min
1≤q1≤q

{Bi(1, q1, r) + G+
i(2)(q − q1, r)}.

If the subtree includes the edges (vi, vi(1)) and (vi, vi(2)), then the best value is

Fi = α(d(vi, vi(1)) + d(vi, vi(2))) + min
1≤q1≤q

{Gi(1)(q1, r) + G+
i(2)(q − q1, r)}.

We then have,
Gi(q, r) = min{Ci, Di, Ei, Fi}.

G+
i (q, r): First of all, we define G+

i (0, r) to be the length of the minimum subtree, T ′
i ,

rooted at vi , ensuring that the weighted distance to each node in Vi is smaller than r .
(For each node vj in Vi , define vk(j) to be the node on P [vi, vj ], closest to vi , satisfying
wjd(vj , vk(j)) < r . T ′

i is the subtree induced by vi , and vk(j), vj ∈ Vi.)

If the subtree does not include the edges (vi, vi(1)) and (vi, vi(2)), then the best value
is

C+
i = min

0≤q1≤q
{B+

i (1, q1, r) + B+
i (2, q − q1, r)}.

If the subtree includes the edge (vi, vi(1)) but not (vi, vi(2)), then the best value is

D+
i = αd(vi, vi(1)) + min

0≤q1≤q
{G+

i(1)(q1, r) + B+
i (2, q − q1, r)}.

If the subtree includes the edge (vi, vi(2)) but not (vi, vi(1)), then the best value is

E+
i = αd(vi, vi(2)) + min

0≤q1≤q
{B+

i (1, q1, r) + G+
i(2)(q − q1, r)}.

If the subtree includes the edges (vi, vi(1)) and (vi, vi(2)), then the best value is

F+
i = α(d(vi, vi(1)) + d(vi, vi(2))) + min

0≤q1≤q
{G+

i(1)(q1, r) + G+
i(2)(q − q1, r)}.

We then have,
G+

i (q, r) = min{C+
i , D+

i , E+
i , F+

i }.

Preprocessing: To compute all the functions Ai, A
+
i , Bi and B+

i , it is actually sufficient
to find and sort the largest k weighted distances in Vi and V \Vi for all vi . The latter task
will consume only O(n2 + nk log k) time. (In fact this task can be performed in O(n2)

time by the methods presented recently in [35].)
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Initialization: If vi is a leaf, then by the general definitions and conventions above, for
r > 0, G+

i (1, r) = +∞ and G+
i (0, r) = 0. As noted above, the best objective value

attained by a subtree containing v1 is

OV1 = min
r∈R∗ G1(k, r).

To evaluate the total complexity of the algorithm we note that for each node vi , the
functions Gi(q, r) and G+

i (q, r) are computed for k values of q and O(n2) values of r .
Hence the total complexity, including the preprocessing, is O(k2n3). (We note in passing
that since the parameter q is bounded by min{k, |Vi |}, the analysis in [32] is applicable
also to the above algorithm. In particular, the actual complexity is only O(kn3).)

5.4. Solving the strategic continuous subtree k-centrum problem

The nestedness result shown above, implies that it is sufficient to solve a restricted model
where the continuous selected subtree contains a point k-centrum of the tree. ( As noted
above the latter can be found in O(n log n) by the algorithm in [16].) Without loss of
generality suppose that the subtree must contain the root v1. We now discretize the con-
tinuous problem as follows. A finite set X ⊂ A(T ) is a Finite Dominating Set (FDS) for
the strategic continuous subtree k-centrum problem, if there exists an optimal subtree
S∗ such that all the leaves of S∗ are in X. Let

R = {r ∈ R
+ : ∃x ∈ A(T ), vi, vj ∈ V, wi �= wj , wid(vi, x)

= wjd(vj , x) = r, or ∃vi, vj ∈ V, r = wid(vi, vj )}.
For each nodevi and r ∈ R, letxi(r)be the point onP [vi, v1] satisfyingwid(vi, xi(r)) =
r . (If there is no such point set xi(r) = vi .) Next define

PEQ = {xi(r) ∈ A(T ) : for any r ∈ R and i = 1, 2, . . . , n}.
Theorem 5.4. The set PEQ is a Finite Dominating Set (FDS) for the strategic contin-
uous subtree k-centrum problem.

Proof. Let Y be a given subtree containing v1, and suppose that no leaf of Y is a node.
( The leaves are interior points of the edges.) The objective function is the sum of the
function αL(Y ) and the sum of the k-largest weighted distances to Y . Consider the
change in the objective, due to small perturbations of the leaves of Y . Since the change
in L(·) is linear in these perturbations, an FDS for the continuous k-centrum subtree
location problem depends only on the change in the sum of the k-largest weighted dis-
tances from Y . It is known that the k-centrum objective is reduced to the convex ordered
median problem with only two different λ values (namely 0, 1). Moreover, if Y has p

leaves then the subtree problem can now be reduced to a p-facility problem. Indeed,
since the tree can be considered rooted at v1, the distance of each node vj from Y is the
distance between vj and the closest point to vj in Y ∩ P [v1, vj ]. (If vj is in Y , then
d(vj , Y ) = 0.) Thus, the p leaves of Y can be identified with the p facilities (points)
to be located in the p-facility problem. Therefore, an FDS for the p-facility convex
ordered median problem with only two different λ values is also an FDS for the strategic
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k-centrum subtree problem. Finally, in [15] it is proved that the set PEQ is an FDS
for this special p-facility location problem. Hence, it is also an FDS for our strategic
continuous k-centrum subtree problem. 	


To summarize, we note that the strategic continuous k-centrum subtree problem can
be discretized by introducing O(n3) additional nodes, with zero weight, and solving the
respective discrete model as above. The O(n3) augmented nodes do not contribute to the
k-centrum objective, and each one of them has only one child of the rooted augmented
tree. Therefore, it is easy to check that the implementation of the above algorithm to the
problem defined on the augmented tree consumes only O(kn7) and not O(kn9) time.

Remark 5.2. Notice that the same FDS is also valid for the modified continuous strategic
subtree problem in which the sum of the k-largest weighted distances from a subtree T ′
is replaced by:

a

k∑

l=1

d(l)(T
′) + b

n∑

l=k+1

d(l)(T
′); a > b > 0, (8)

(d(l)(T
′) is the l-th largest element in the set {w1d(v1, T

′), . . . , wnd(vn, T
′)}.) We note

in passing that the DP algorithm of Section 5.3 can easily be adapted to deal with the
more general objective function described in (8). Thus, it also solves the corresponding
strategic discrete and continuous subtree problems.

Remark 5.3. It is also worth noting that the set R considered in the definition of the
FDS, PEQ, coincides with the set R defined in Theorem 1 in [38]. The radii r such that
there exist x, vi, vj , satisfying r = wid(vi, x) = wjd(vj , x) correspond to elements of
R2 and those for which r = wid(vi, vj ) for some vi �= vj , correspond to elements in
R1. Unfortunately, it is not clear at this point what kind of FDS is valid for the general
version of the p-facility ordered median problem. Thus, the same question applies to
the strategic version of our convex ordered subtree problem.

6. Concluding remarks

We have presented above a variety of polynomial algorithms to solve problems of locat-
ing tree-shaped facilities using the convex ordered median objective. For the special
case of the k-centrum objective we proved nestedness results, which led to improved
algorithms. At the moment we do not know whether these nestedness results extend
to the ordered median objective. In a sequel paper we plan to investigate the case of
path-shaped facilities, using the convex ordered median objective. The goal is to extend
the recent subquadratic algorithms for locating path-shaped facilities with the median
and center objectives reported in [1, 37, 41, 42]. Note that unlike the case of tree-shaped
facilities, there are only O(n2) topologically different path-shaped facilities on a tree.
Therefore, the models with path-shaped facilities are clearly polynomial. The goal is to
determine whether low order algorithms exist also for the ordered median objective.
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